If it's not what You are looking for type in the equation solver your own equation and let us solve it.
40t=-16t^2+60t
We move all terms to the left:
40t-(-16t^2+60t)=0
We get rid of parentheses
16t^2-60t+40t=0
We add all the numbers together, and all the variables
16t^2-20t=0
a = 16; b = -20; c = 0;
Δ = b2-4ac
Δ = -202-4·16·0
Δ = 400
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{400}=20$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-20)-20}{2*16}=\frac{0}{32} =0 $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-20)+20}{2*16}=\frac{40}{32} =1+1/4 $
| 14a-14a+a=17 | | v/5+12=30 | | 6^4x-5=46 | | 10j-j-4j-4j=11 | | 3(2+3r)=33 | | 7^r=49 | | -4(x-8)=5x-31 | | -17z-4=-16-20 | | n-n+n=13 | | 895=300+2/5(x-300) | | 19=v/2+16 | | 80p+700=75p^2+10p+200 | | 6x-x-4x+3=14 | | 12z-8z+2z-4z=8 | | 6u-3u-2u=20 | | -53.6=-6.7n | | -8x+5(x-8)=-19 | | 9c-3c-3c-c=12 | | 7x-2x=+29-4 | | -5w=85 | | 4q+q+q-2q-3=1 | | 10x-3-24=4 | | 3u-3u+4u+2=10 | | -4/5x-7/20x+1/4=-72 | | 2(m-9)-13=3 | | -4y+9=10+5y | | 20t+2t-20t=14 | | 4m+2m-5m+2=4 | | (2x-8)/(6x-24)=1/3 | | 7u/2=42 | | h+4h-3=17 | | w−-27=72 |